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a b s t r a c t

In this paper, a robust configuration (i.e., position and orientation) control of an industrial forklift is

investigated. The equations of motion of a typical forklift are derived. Configuration control utilizing

three navigation variables (i.e., the distance to the goal point and two split angles of the orientation

error) is designed. Considering that an industrial forklift should move forward and backward effectively

depending on the location of a goal point, control laws with regard to forward and backward

movements are separately derived. For a nominal model that does not include any uncertainty, the

developed control law assures the uniform asymptotic stability. However, in the presence of

uncertainties, the control law guarantees that the solutions of three navigation variables are uniformly

bounded. The effectiveness of the developed algorithm is demonstrated through simulations and

experiments.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The configuration (i.e., position and orientation) control pro-
blem of autonomous wheeled vehicles has been widely studied
over several years. The examples include the pallet-picking of an
autonomous forklift, the recharging of an autonomous mobile
robot, the parking of an autonomous car, and others. In modeling
an autonomous system, there always occur uncertainties: tire/
surface slip, measurement noise, gear backlash, friction, neglected
vehicle dynamics, and more. In this paper, a robust configuration
control problem of an autonomous forklift considering the
above uncertainties is focused, in which the uncertainties are
put into three categories: measurement noises, modeling errors,
and tracking errors.

A wheeled vehicle is a nonholonomic system (i.e., a system with
nonholonomic constraints). Brockett (1983) proved that a state-
feedback control in the Cartesian coordinate system cannot be used
to drive a nonholonomic system to an arbitrary configuration in an
asymptotic fashion. To cope with this problem, coordinate transfor-
mations have been used. Their examples include the chained form
(Murray & Sastry, 1993), the polar coordinates (Aicardi, Casalino,
Bicchi, & Balestrino, 1995), the sigma process (Astolfi, 1996), and the
transverse form (Morin & Samson, 2009). Other notable control
strategies include the time-varying controls (Samson, 1995; Tamba,
Hong, & Hong, 2009), discontinuous controls (Astolfi, 1996;

Marchand & Alamir, 2003), the switching method (Hespanha &
Morse, 1999), the model predictive control (Yoon, Shin, Kim, Park, &
Sastry, 2009), the iterative-state steering controls (Lucibello &
Oriolo, 2001; Widyotriatmo, Hong, & Hong, 2009), and the linear-
interpolation-based control (Scaglia, Rosales, Quintero, Mut, &
Agarwal, 2010). The configuration control designed in the polar
coordinate is known to provide fast and natural motions from an
initial to a goal configurations (Aicardi et al., 1995; Hong, Tamba, &
Song, 2008; Oriolo, De Luca, & Vendittelli, 2002; Park, Yoo, Park, &
Choi, 2009; Shim & Sung, 2004; Siegwart & Nourbakhsh, 2004;
Widyotriatmo & Hong, 2011). It is also noted that most early works
assumed the no slipping of wheels, no tracking errors, and no
measurement noises.

As reported in Jiang (2000) and Widyotriatmo, Hong, and
Prayudhi (2010), a supposedly ideal feedback law that regulates a
mobile robot to a fixed configuration can diverge if even small
uncertainties occur. Among the many studies that investigated the
robustness of configuration control against uncertainties, some dealt
with the identification of parametric uncertainties and modeling
errors (Ge, Wang, & Lee, 2003; Lin & Yang, 2008), the switching
schemes (Bui & Hong, 2010; Prieur & Astolfi, 2003; Xi, Feng, Jiang, &
Cheng, 2003), the sliding mode controls (Corradini & Orlando, 2002;
Floquet, Barbot, & Peruquetti, 2003), and the velocity scheduling
control (Buccieri, Perritaz, Mullhaupt, Jiang, & Bonvin, 2009). Tang,
Miller, Krovi, Ryu, and Agrawal (2008) and Ryu and Agrawal (2010)
investigated the polynomial trajectory planning and control based
on the differential flatness properties of a wheeled mobile robot. In
path/trajectory tracking, the linear algebraic method (Ailon, Berman,
& Arogeti, 2005), fuzzy controls (Moustris & Tzafestas, 2011;
Treesatayapun, 2011), and adaptive controls (Martins, Celeste,
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Carelli, Sarcinelli-Filho, & Bastos-Filho, 2008; Rossomando, Soria, &
Carelli, 2011) were utilized.

In the present paper, the use of two loops is proposed: the
outer loop is to compute two desired control commands (linear
velocity and steering angle of the driving wheel), and the inner
loop is to track the two desired commands by applying the
conventional proportional-derivative (PD) control to the two AC
motors (one for driving and the other for steering). The outer loop
incorporates all the noises, modeling errors, and tracking errors.
In designing the control commands, three navigation variables
(i.e., the distance error and two split angles of the orientation
error, one in association with the direction to the goal point, and
the other in association with the desired direction at the goal
point) are utilized. Since the forklift can move freely in both
directions (forward and backward), the workspace is split into
two regions depending on the location of the goal point (whether
it is located in front of the vehicle or not). For a nominal model
(i.e., no noise and no uncertainty), a control law that assures the
uniform asymptotic stability of the origin in the configuration
error space is first proposed. And then a robust control law that
guarantees the uniform boundedness of the solutions of three
navigation variables in the presence of uncertainties (measure-
ment noises, modeling errors, and tracking errors) is derived.

The contributions of this paper are the following. A control model
of a typical forklift and its configuration control in the presence of
input disturbances, measurement noises, and modeling errors are
first discussed. If one goal configuration is assigned to individual
vehicles, there exists only one equilibrium point to each vehicle.

Second, control laws that assure the uniform asymptotic stability,
when there is no uncertainty, and the uniform boundedness, in the
presence of uncertainties, of the equilibrium point are proposed.
Third, a discrete-time analysis for the proposed algorithm and the
range of control gains in terms of sampling time are clarified. Fourth,
experimental results using an autonomous forklift are provided.

The paper has the following structure. Section 2 describes the
overall control structure, derives the equations of motion, ana-
lyzes the AC motor control, and formulates the configuration
control problem for forward and backward movements. Section 3
discusses the proposed control laws for the ideal case and in the
presence of uncertainties. Section 4 presents the stability analysis
of the proposed control laws in the discrete-time domain. Section
5 provides simulation and experimental results confirming the
effectiveness of the proposed method for driving the forklift from
an arbitrary initial configuration to a desired goal configuration.
Section 6 draws conclusions.

2. Autonomous forklift model

2.1. Control structure

Fig. 1 depicts the developed autonomous forklift having two
caster wheels in the front and one drivable-and-steerable wheel in
the rear. It is equipped with a laser-based localization sensor SICK
NAV200, an embedded PC, and a programmable logic controller
(PLC). The NAV200 is used to measure the position (x, y) and
orientation (y) of the forklift in the global coordinate frame based
upon the known locations of reflectors. Fig. 2 shows a control block
diagram of the forklift having two loops: outer loop and inner loop.
The outer loop, programmed in Cþþ on an industrial PC, generates
two desired commands: the linear velocity (vd) and the steering
angle (dd) of the driving wheel. These commands are updated upon
the errors between the goal configuration (xg, yg, yg) and the present
configuration (x(t), y(t), y(t)) measured by NAV200 at a sampling
frequency of 10 Hz. The inner loop, implemented in the PLC,
generates two control signals (voltages uv and ud) to control the
two AC motors (driving and steering) in the fashion that the driving
wheel follows the desired commands. The two voltages are calcu-
lated using the desired commands and the encoders’ feedback at the
frequency of 100 Hz. The PLC and the industrial PC communicates
via RS232.

2.2. Equations of motion

Fig. 3 shows a schematic of the forklift. O-îĵ represents the global
reference coordinate frame in the workspace; Ob-îb ĵb denotes the
body coordinate frame attached to the vehicle body where Ob (theFig. 1. The forklift used in experiment.

Configuration
Control

vd

�d

Linear
Velocity
Control

Motor 
Driver

AC Motor
(Driving)

Steering
Angle

Control

Motor 
Driver

AC Motor 
(Steering)

PLC

Incremental
Encoder

Absolute
Encoder

NAV200

PC

uv

u�

FORKLIFT

Feedback 100Hz

Feedback 100Hz

Feedback 10Hz

MOTORS

g

g

g

θ
y

x

θ
y
x

Inner Loop

Outer Loop

v

�

Fig. 2. Control block diagram.

A. Widyotriatmo, K.-S. Hong / Control Engineering Practice 20 (2012) 315–325316



Author's personal copy

mid-point of two front wheels) is the origin of the frame to which all
the motions of the vehicle are generated; and l denotes the distance
between the center of the rear wheel and Ob. The vehicle’s config-
uration is specified by its position (x, y) and orientation y, which is the
angle of the îb-axis from the î-axis (in the counterclockwise direction).
The velocity v and angle d in ð�p,pÞ are the linear velocity and the
steering angle of the rear wheel from the îb-axis, respectively.

Let jf and jr be the angular displacements of the front and
rear wheels, respectively. Let p¼ ½x,y,y,d,jf ,jr�

T AR6 be the state
vector. Then, the equations of motion and nonholonomic con-
straints of the vehicle are given as follows (Fierro & Lewis, 1998):

MðpÞ €pþCðp, _pÞ _pþfþgðpÞ ¼ BðpÞsþJðpÞfC, ð1Þ

JT
ðpÞ _p ¼ 0, ð2Þ

where MðpÞAR6�6 is the symmetric and positive definite inertia
matrix, Cðp, _pÞAR6�6 is the centripetal and Coriolis matrix, fAR6

is the surface friction vector, gðpÞAR6 is the gravitational vector,
BðpÞAR6�2 is the input matrix, s¼ ½tv, td�T AR2 is the torque
inputs to the driving and steering motors, respectively, fCAR4 is
the constraint force vector, and JðpÞAR6�4 is the constraint
matrix. In this paper, it is assumed that the vehicle operates on
a flat surface, so that gðpÞ ¼ 0. In driving the ideal model, it is also
assumed that the vehicle satisfies the conditions of nonslipping
(or pure) rolling. Then, the constraint matrix JðpÞ is given by

JðpÞ ¼

�siny �ðcosysindþsinycosdÞ cosy cosycosd�sinysind
cosy cosycosd�sinysind siny cosysindþsinycosd

0 �lcosd 0 �lsind
0 0 0 0

0 0 �rf 0

0 0 0 �rr

2
6666666664

3
7777777775

,

ð3Þ

where rf and rr are the radii of the front and rear wheels, respectively.
A matrix SðpÞAR6�2, to obtain ST

ðpÞJðpÞ ¼ 0, is chosen as

SðpÞ ¼
cosycosd sinycosd �ð1=lÞsind 0 ð1=rf Þcosd 1=rr

0 0 0 1 0 0

� �T

:

ð4Þ

Let _d be the angular velocity of the steering angle. Let v¼ ½v, _d�T .
Then, the first derivative of vector p is obtained as

_p ¼ SðpÞv

¼
cosycosd sinycosd �ð1=lÞsind 0 ð1=rf Þcosd 1=rr

0 0 0 1 0 0

� �T v
_d

� �
:

ð5Þ

Now, using the Lagrange method, the specific forms of (1) are
derived. The kinetic energy K is given by

K ¼
1

2
_pT M _p, ð6Þ

M¼

m 0 0 0 0 0

0 m 0 0 0 0

0 0 Ib 0 0 0

0 0 0 Id 0 0

0 0 0 0 If 0

0 0 0 0 0 Ir

2
6666666664

3
7777777775

, ð7Þ

where m is the vehicle mass, Ib is the mass moment of inertia of
the vehicle with respect to Ob, Id is that of the rear wheel with
respect to the normal axis to the flat surface, and If and Ir are the
mass moments of inertia of the front and rear wheels around their
individual rolling axes. The centripetal and Coriolis matrix Cðp, _pÞ
is given by

Cðp, _pÞ ¼ _MðpÞ _p�
@K

@p
¼ 0: ð8Þ

The input matrix BðpÞ is

BðpÞ ¼
0 0 0 0 0 1

0 0 0 1 0 0

� �T

: ð9Þ

From (5), the second derivative of vector p is obtained as

€p ¼ SðpÞ _vþ _Sðp, _pÞv: ð10Þ

The substitution of (10) into (1) and multiplication of ST
ðpÞ at

both sides yields

M1ðpÞ _vþC1ðp, _pÞvþf1 ¼ B1ðpÞs, ð11Þ

where

M1ðpÞ ¼ ST
ðpÞMðpÞSðpÞ

¼
ðmþðIf=r2

f ÞÞcos2dþðIb=l2Þsin2dþ Ir 0

0 Id

" #
, ð12Þ

C1ðp, _pÞ ¼ ST
ðpÞMðpÞ _Sðp, _pÞ

¼
ððIb=l2Þ�ðmþðIf=r2

f ÞÞÞcosdsind _d 0

0 0

" #
, ð13Þ

f1 ¼ ST
ðpÞf ¼ f v f d

h iT
, ð14Þ

B1ðpÞ ¼
1=rr 0

0 1

� �
: ð15Þ

Note that f v and f d are the surface frictions against the linear and
rotational motions of the rear wheel, respectively. Finally, the
equations of motion for the forklift in Fig. 3 are

_x ¼ vcosycosd, ð16Þ

_y ¼ vsinycosd, ð17Þ

_y ¼�ðv=lÞsind, ð18Þ

m1 _vþc1vþrrf v ¼ tv, ð19Þ

Id
€dþ f d ¼ td, ð20Þ

where

m1 ¼ rrððmþðIf=r2
f ÞÞcos2dþðIb=l2Þsin2dþ IrÞ, ð21Þ

c1 ¼ rrððIb=l2Þ�ðIf=r2
f Þ�mÞcosdsind _d, ð22Þ

bî
bĵl

v
�

�

(x,y)
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Fig. 3. Forklift schematic.
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and Id is mass moment of the rear wheel and tv, td are the torque
inputs to the driving and steering motors.

2.3. AC motor control

In this subsection, the dynamics of the vehicle in (19) and (20)
are focused. Assuming that the inductance voltages of the motors
are negligible, the torques of the driving motor tv and the steering
motor td are obtained as (De La Cruz, Bastos, & Carelli, 2011)

tv ¼ ðkm,v=Rm,vÞððuv�ðkemf ,v=rrÞvÞ, ð23Þ

td ¼ ðkm,d=Rm,dÞðud�kemf ,d
_dÞ, ð24Þ

where uv and ud are the input voltages applied to the driving and
steering motors, respectively, and km,v, kemf ,v, and Rm,v are the
motor torque constant, the back electromotive constant multi-
plied by a gear ratio, and the resistance of the driving motor,
respectively, and km,d, Rm,d, and kemf ,d are those of the steering
motor, respectively.

To track the desired linear velocity vd and steering angle dd, a
PD control is adopted. The control signals uv and ud are designed
as

uv ¼ kP,vðvd�vÞ�kD,v _v, ð25Þ

ud ¼ kP,dðdd�dÞ�kD,d
_d, ð26Þ

where kP,v and kD,v are the proportional and the derivative gains
of the driving motor, and kP,d and kD,d are those of the steering
motor, respectively. Using (23) and (25), (19) becomes

ððRm,v=km,vÞm1þkD,vÞ _vþððRm,v=km,vÞc1þkemf ,v=rrþkP,vÞv

¼ kP,vvd�ðRm,vrr=km,vÞf v: ð27Þ

Choosing kP,v4maxððRm,v=km,vÞc1�kemf ,v=rrÞ and assuming that f v

is constant, the solution of (27) is obtained as

vðtÞ ¼ ðkP,v=ððRm,v=km,vÞc1þkemf ,v=rrþkP,vÞÞ

�ðvd�ððRm,vrrÞ=ðkm,vkP,vÞÞf v

�ðvd�vðt0Þ�ððRm,vrrÞ=ðkm,vkP,vÞÞf vÞÞexpð�lvtÞ, ð28Þ

where

lv ¼ ððRm,v=km,vÞc1þkemf ,v=rrþkP,vÞ=ððRm,v=km,vÞm1þkD,vÞ40:

ð29Þ

Now, the substitution of (24) and (26) into (20) yields

ðRm,d=ðkm,dkP,dÞÞId
€dþððkD,dþkemf ,dÞ=kP,dÞ

_dþd
¼ dd�ðRm,d=ðkm,dkP,dÞÞf d: ð30Þ

An overdamped response of the steering angle d is designed by
setting kP,d and kD,d such that

ððkD,dþkemf ,dÞ=kP,dÞ
2
�4ðRm,dIdÞ=ðkm,dkP,dÞ40: ð31Þ

Assuming that f d is constant, the solution of (30) becomes

dðtÞ ¼ dd�ðRm,d=ðkm,dkP,dÞÞf d

�ðdd�dðt0Þ�ðRm,d=ðkm,dkP,dÞÞf dÞ
ld,2 expð�ld,1tÞ�ld,1 expð�ld,2tÞ

ld,2�ld,1
,

ð32Þ

where

ld,1 ¼
ððkD,dþkemf ,dÞ=kP,dÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððkD,dþkemf ,dÞ=kP,dÞ

2
�4ðRm,dIdÞ=ðkm,dkP,dÞ

q
2ðRm,dIdÞ= km,dkP,d

� � 40,

ld,2 ¼
ððkD,dþkemf ,dÞ=kP,dÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððkD,dþkemf ,dÞ=kP,dÞ

2
�4ðRm,dIdÞ=ðkm,dkP,dÞ

q
2ðRm,dIdÞ=ðkm,dkP,dÞ

40:

ð33Þ

From (28) and (32), the linear velocity v and the steering angle d
track the desired commands vd and dd with tracking errors
~v ¼ v�vd and ~d ¼ d�dd caused by the frictions and the exponen-
tial terms in (28) and (32). The time constants of the exponential
term of the linear velocity and of the steering angle are 1=lv and
1=ld,2, respectively. As the load of the forklift m increases, the
exponential terms decay slowly, and therefore the two tracking
errors ( ~v and ~d) also increase. In this paper, it is assumed that the
load variation during motions is very small and using the fixed
gains of PD control, the linear velocity v and steering angle d can
track their desired values vd and dd with small bounded tracking
errors 9 ~v9r ~v and 9 ~d9r ~d, where ~v and ~d are their bounds.

2.4. Kinematic equations in navigation variables

Fig. 4(a) and (b) illustrates two situations: (a) the case that a
forward movement of the forklift is quicker to reach the goal position
and (b) the case that a backward movement is quicker, which is the
case that the goal position is located behind the vehicle. The goal
coordinate frame Og�îg ĵg is set to the desired goal configuration of
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the vehicle at the goal point, where (xg,yg) is the coordinates of the
goal point Og, and yg is the rotational angle of the îg-axis from the
global î-axis. Let ~x ¼ xg�x, ~y ¼ yg�y, and ~y ¼ yg�y be the configura-
tion errors between the current and goal configurations. Now, three
new navigation variables {r, a, f} are defined as follows:

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2
þ ~y2

q
, ð34Þ

a¼ arctan2ð ~y, ~xÞ�y, ð35Þ

f¼ yg�arctan2ð ~y, ~xÞ, ð36Þ

where r is the distance error, and a and f are the split portions of
the orientation error (i.e., ~y ¼ aþf), in which a is the portion from
the vehicle’s moving direction to the goal point direction and f is
the remaining error at the goal frame. It is noted that a and f are
not defined if ~x ¼ ~y ¼ 0 (i.e., r¼ 0). In determining the initial
moving direction (forward or backward) of the vehicle upon receiv-
ing a command, two regions (Ofront and Orear) are defined as

Ofront ¼ fðxg, ygÞ : 9arctan2ðyg�y,xg�xÞ�y9op=2g, ð37Þ

Orear ¼ fðxg, ygÞ : 9arctan2ðyg�y,xg�xÞ�y94p=2g: ð38Þ

Then, the kinematic Eqs. (16)–(18) using the introduced
navigation variables become

_r ¼�vcosacosd, ð39Þ

_a ¼ ðv=rÞsinacosdþðv=lÞsind, ð40Þ

_f ¼�ðv=rÞsinacosd: ð41Þ

If the vehicle achieves its goal configuration, both r and ~y (aþf)
become zero. Let the polar coordinate system comprising r and ~y
be the error space. The control problem of moving a vehicle from
an initial configuration to a goal configuration becomes the
asymptotic stabilization problem from an arbitrary point in the
error space to its origin. It is noted that ~y ¼ 0 is achieved by
making a¼f¼ 0 in Ofront, but that is achieved by making
a¼f¼ p in Orear. Therefore, the target points become
ðr,a,fÞ ¼ ð0,0,0Þ in Ofront and ðr,a,fÞ ¼ ð0,p,pÞ in Orear.

3. Control laws design

3.1. Control law for the ideal case

In this subsection, the control laws that achieve the asymptotic
stability of the equilibrium points (i.e., (0, 0, 0) if ðxg,ygÞAOfront

and (0, p, p) if (xg, yg)AOrear) for the nominal model (39)–(41) are
derived. The tracking errors ( ~v and ~d) are assumed to be
negligible, so that v¼ vd and d¼ dd (the control laws under
uncertainties will be discussed in Section 3.2). The control law
in Ofront is first derived. Let v1 ¼ vcosd and v2 ¼ vsind. Then, v

and d in terms of v1 and v2, respectively, become

v¼ sgnðv1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1þv2
2

q
, ð42Þ

d¼ arctanðv2=v1Þ: ð43Þ

Let a0 ¼ sina�f. Let v1 and v2 be designed as

v1 ¼ kv,1r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða0 þfÞ2

q
, ð44Þ

v2 ¼�lðkv,2a0 þkv,1f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða0 þfÞ2

q
Þ, ð45Þ

where kv,1 and kv,2 are positive constant gains. From (39)–(41)
and (42)–(45), the following are obtained:

_r ¼�kv,1rð1�ða0 þfÞ2Þ, ð46Þ

_a0 ¼ � kv,2�kv,1 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða0 þfÞ2

q� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða0 þfÞ2

q� �
a0

þ kv,1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða0 þfÞ2

q� �
f, ð47Þ

f¼� kv,1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða0 þfÞ2

q� �
a0� kv,1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða0 þfÞ2

q� �
f: ð48Þ

Let Ba ¼ kv,2�kv,1 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða0 þfÞ2

q� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða0 þfÞ2

q
and

Bf ¼ kv,1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða0 þfÞ2

q
40. Note that Ba40 is achieved if

kv,242kv,1.

Let a Lyapunov function candidate be

V ¼ ð1=2Þðr2þa02þf2
Þ: ð49Þ

Using (46)–(48), the time derivative of V becomes

_V ¼�ðB2
f=kv,1Þr2�Baa02�Bff

2: ð50Þ

Theorem 1. Consider the system (39)–(41) with goal points in Ofront.
Let the control law be given by

v¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkv,1rcosaÞ2þ l2ðkv,2 sina�ðkv,2�kv,1 cosaÞfÞ2

q
, ð51Þ

d¼�arctan l
kv,2 sina�ðkv,2�kv,1 cosaÞf

kv,1rcosa

� �� �
, ð52Þ

where kv,242kv,140. Then, the origin (r, a, f)¼(0, 0, 0) is

uniformly asymptotically stable.

Proof. Let ðxg,ygÞAOfront, (50) is rewritten as

_V ¼�ðB2
f=kv,1Þr2�Baðsina�fÞ2�Bff

2 r0, ð53Þ

where Bf, Ba40 if kv,242kv,140. Based on Barbalat’s lemma
(Khalil, 2002; p. 323), (53) concludes that r,a,f-0 as t-1. &

Corollary 1. Consider the system (39)–(41) with goal points in Orear.
Let the control law be

v¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkv,1rcosaÞ2þ l2ðkv,2 sinaþðkv,2þkv,1 cosaÞðf�pÞÞ2

q
, ð54Þ

d¼�arctan l
kv,2 sinaþðkv,2þkv,1 cosaÞðf�pÞ

kv,1rcosa

� �� �
: ð55Þ

Then, (r, a, f)¼(0, p, p) is uniformly asymptotically stable.

Proof. Using the same procedure as in (44)–(48), the time-
derivative of the Lyapunov function candidate V ¼ ð1=2Þðr2þ

ðsinða�pÞ�ðf�pÞÞ2þðf�pÞ2Þ for ðxg,ygÞAOrear is obtained as

_V ¼�ðB2
f�p=kv,1Þr2�Ba�pðsinða�pÞ�ðf�pÞÞ2�Bf�pðf�pÞ2r0,

ð56Þ

where Ba�p ¼ ðkv,2�kv,1ð1þcosða�pÞÞÞcosða�pÞ40 and Bf�p ¼
kv,1cosða�pÞ40 in Orear. Therefore, r-0 and a,f-p as t-1. &

Remark 1. As noted in Section 2.4, if r¼0, a and f are not
defined. In this special case, let v and d be determined as

v¼ kv,19 ~y9, ð57Þ

d¼�ðp=2Þsgn ~y: ð58Þ

The substitution of (57) and (58) into (16)–(18) yields

_~x ¼ 0, ð59Þ

_~y ¼ 0, ð60Þ
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_~y ¼�kv,1
~y: ð61Þ

Then, the orientation error ~y converges exponentially to zero

while the position error ( ~x, ~y) remains at zero.

Remark 2. a0 þf¼ 1 (or a¼ 7p=2) results in equilibrium points
of (46)–(48). To get out from the equibrium point, the linear
velocity v is chosen as a nonzero constant ve for a short time
interval [0, te). Once the state escapes from aðteÞ ¼7p=2, the
linear velocity and steering angle are set to (51) and (52) if
ðxg,ygÞAOfront or to (54) and (55) if ðxg,ygÞAOrear.

Remark 3. The gains kv,1 and kv,2 can be chosen via the linear-
ization of (46)–(48) at the origin, in which the spectrum of the
linearized system can be assigned by proper kv,1 and kv,2.

3.2. Control laws in the presence of uncertainties

The kinematic Eqs. (39)–(41) were obtained under the very
ideal conditions (no slipping, accurate measurement, precise
tracking, and others). In real environments, there always exist
uncertainties: measurement noises, modeling errors, and tracking
errors. Let (nx, ny) and ny be the measurement noises in (x, y) and
y, respectively, such that 9nx9rnx, 9ny9rny, and 9ny9rny, where
nx, ny, and ny are their bounds. Then, the noises in the navigation
variables are bounded by

9nr9r9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~xþnxÞ

2
þð ~yþnyÞ

2
q

�

ffiffiffiffiffi
~x2

q
þ ~y29, ð62Þ

9na9r9atan2ð ~yþny, ~xþnxÞ�atan2ð ~y, ~xÞ9þny, ð63Þ

9nj9r9atan2ð ~yþny, ~xþnxÞ�atan2ð ~y, ~xÞ9: ð64Þ

Let Di, iAfr,a,fg, be the possible modeling errors that satisfy
9Di9rki where ki are positive constants. The kinematic Eqs. (39)–
(41) including measurement noises, modeling errors, and tracking
errors are written as

_r ¼�ðvdðr,a,f;niÞþ ~vÞcosacosðddðr,a,f;niÞþ
~dÞþDr, ð65Þ

_a ¼ ððvdðr,a,f;niÞþ ~vÞ=rÞsinacosðddðr,a,f;niÞþ
~dÞ

þððvdðr,a,f;niÞþ ~vÞ=lÞsinðddðr,a,f;niÞþ
~dÞþDa, ð66Þ

_j ¼�ððvdðr,a,f;niÞþ ~vÞ=rÞsinacosðddðr,a,f;niÞþ
~dÞþDj, ð67Þ

where ni, iAfr,a,fg, are the noises in the navigation variables.
Let vd ¼ sgnðv1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1þv2
2

q
and dd ¼ arctanðv2=v1Þ, and v1 and v2

be chosen as

v1 ¼ kv,1r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða0 þfÞ2

q
þv01, ð68Þ

v2 ¼�lðkv,2a0 þkv,1f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða0 þfÞ2

q
�v02Þ, ð69Þ

where v01 and v02 are functions to be designed. Using (65)–(67) and
(68) and (69), the following are obtained:

_r ¼�kv,1rð1�ða0 þfÞ2Þ�ðv01þm1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða0 þfÞ2

q
þDr, ð70Þ

_a0 ¼ � kv,2�kv,1 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða0 þfÞ2

q� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða0 þfÞ2

q� �
a0

þ kv,1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða0 þfÞ2

q� �
fþððv01þm1Þ=rÞða0 þfÞ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða0 þfÞ2

q� �

þðv02þm2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða0 þfÞ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða0 þfÞ2

q
DaþDf, ð71Þ

f¼� kv,1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða0 þfÞ2

q� �
a0� kv,1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ða0 þfÞ2

q� �
f

�ððv01þm1Þ=rÞða0 þfÞþDf, ð72Þ

where m1 and m2 are the bounded perturbations from
the measurement noises and tracking errors such that 9m19rm1

and 9m29rm2, and m1 and m2 are their bounds. Let w be
defined as

w¼
w1

w2

" #
¼
ðBf=kv,1Þð�r2þða02�f2

ÞÞþða0 þfÞa0

ðBf=kv,1Þa0

" #
, ð73Þ

and v01 and v02 be designed as follows:

v01 ¼
�kv,3w1=:w:2, if kv,3:w:2Ze,

�k2
v,3w1=e, if kv,3:w:2oe,

8<
: ð74Þ

v02 ¼
�kv,3w2=:w:2, if kv,3:w:2Ze,

�k2
v,3w2=e, if kv,3:w:2oe,

8<
: ð75Þ

where kv,3 is a positive constant gain such that kv,3Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1þm
2
2

q
,

and e is a small positive constant. The second terms of v01 in (74)

and v02 in (75) are chosen to avoid a possible division by zero. If

kv,3:w:2Ze, the time-derivative of the Lyapunov function V in

(49) becomes

_V r�ðminðB2
f=kv,1,Ba,BfÞ�maxðkr,kaþkfÞÞðr2þa022 þf

2
Þ

�9kv,3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1þm
2
2

q
9:w:2

2 r0: ð76Þ

Note that minðB2
f=kv,1,Ba,BfÞ�maxðkr,kaþkfÞ40 is obtained if

the control gains kv,1 and kv,2 are chosen as 2maxðkr,kaþkfÞo
2kv,1okv,2. Now, if kv,3:w:2oe, the following is obtained:

_V r�9minðB2
f=kv,1,Ba,BfÞ�maxðkr,kaþkfÞ9ðr2þa02þf2

Þ

�k2
v,3:w:2

2=eþkv,3:w:2: ð77Þ

The term �k2
v,3:w:2

2=eþkv,3:w:2 attains its maximum value e=4
at kv,3:w:2 ¼ e=2. Then, (77) becomes

_V r�9minðB2
f=kv,1,Ba,BfÞ

�maxðkr,kaþkfÞ9ðr2þa02þf2
Þþe=4: ð78Þ

Theorem 2. Consider the system (65)–(67) with goal points in Ofront.
Let the control law be given by

vd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkv,1rcosaþv01Þ

2
þ l2ðkv,2 sina�ðkv,2�kv,1 cosaÞfþv02Þ

2
q

,

ð79Þ

dd ¼�arctan l
kv,2 sina�ðkv,2�kv,1 cosaÞfþv02

kvrcosaþv01

� �� �
, ð80Þ

where v01 and v02 are defined in (74) and (75), respectively, and w is

given by

w¼
w1

w2

" #
¼
ðBf=kv,1Þð�r2þððsina�fÞ2�f2

ÞÞþsinaðsina�fÞ
ðBf=kv,1Þðsina�fÞ

" #
:

ð81Þ

Then, the solutions of (66)–(68) are uniformly bounded around the

origin.

Proof. Let ðxg,ygÞAOfront. (78) is rewritten as

_V r�9minðB2
f=kv,1,Ba,BfÞ�maxðkr,kaþkfÞ9

ðr2þðsina�fÞ2þf2
Þþe=4: ð82Þ

Therefore, ifffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þðsina�fÞ2þf2

q
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Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e=ð49minðB2

f=kv,1,Ba,BfÞ�maxðkr,kaþkfÞ9Þ
q

,

_V r0 is obtained. Then, rðtÞ, aðtÞ, fðtÞ are uniformly bounded

around the origin (0, 0, 0). &

Corollary 2. Consider the system (65)–(67) with goal points in Orear.
Let the control law be given by

vd ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkv,1rcosaþv01Þ

2
þ l2ðkv,2 sinaþðkv,2þkv,1 cosaÞðf�pÞ�v02Þ

2
q

,

ð83Þ

dd ¼�arctan l
kv,2 sinaþðkv,2þkv,1 cosaÞðf�pÞ�v02

kvrcosaþv01

� �� �
, ð84Þ

where v01 and v02 are defined in (74) and (75), respectively, and w is

given by

w¼
w1

w2

" #
¼ ðBf=kv,1Þð�r2þðð�sina�fþpÞ2�ðf�pÞ2ÞÞ
h

�sinað�sina�fþpÞðBf=kv,1Þð�sina�fþpÞ
	
: ð85Þ

Then, the solutions of (65)–(67) are uniformly bounded around

(0, p, p).

Proof. The proof is similar to Theorem 2. &

Remark 4. If r¼ 0, vd and dd are chosen as in Remark 1.

vd ¼ kv,19 ~y9, ð86Þ

dd ¼�ðp=2Þsgn ~y: ð87Þ

In the presence of uncertainties, the position errors ð ~x, ~yÞ cannot
be guaranteed to stay at zero at all time. If, the control law (86)
and (87) renders ð ~x, ~yÞa0, the control law switches to (79) and
(80) if ðxg,ygÞAOfront or (83) and (84) if ðxg,ygÞAOrear.

4. Discrete-time analysis

The control laws in Section 3 were designed in the continuous-
time domain. As discussed in Section 2.1, the measurement by
NAV200 and the desired control inputs (vd and dd) are updated
every 100 ms. This becomes a sampled-data system. Let T40 be
the sampling period. The control inputs vdðtÞ and ddðtÞ are held

constants during the sampling interval kTrtoðkþ1ÞT ,
k¼ 0,1,2,. . ., and the navigation variables are updated at every
sampling instance kT.

In Ofront, the Euler-approximations of Eqs. (70)–(72) are

rðkþ1Þ ¼ rðkÞ�TððB2
f=kv,1ÞrðkÞþðBf=kv,1Þðv

0
1þm1Þ�DrÞ, ð88Þ

a0ðkþ1Þ ¼ a0ðkÞ�TðBaa0ðkÞ�BffðkÞ
�ððv01þm1Þ=rÞða0�fÞð1þBf=kv,1Þ

�ðBf=kv,1Þððv
0
2þm2Þ=lÞ�ðBf=kv,1ÞDa�DfÞ, ð89Þ

fðkþ1Þ ¼fðkÞ�TðBfa0ðkÞþBffðkÞ
þððv01þm1Þ=rÞða0 þfÞ�DfÞ: ð90Þ

Here, the Lyapunov function VðkÞ ¼ r2ðkÞþa02ðkÞþf2
ðkÞ is uti-

lized. If kv,3:w:2oe, the difference of V between time kþ1 and k

is given as

DV ¼ Vðkþ1Þ�VðkÞ

rTð�ðminð2B2
f=kv,1�Tkv,1,2Ba�TðBaþB2

f=kv,1Þ,2Bf�TB2
fÞ

�maxðkr,kaþkfÞÞðr2þa02þf2
Þþe=2Þ: ð91Þ

Let

Z¼minð2B2
f=kv,1�Tkv,1,2Ba

�TðBaþB2
f=kv,1Þ,2Bf�TB2

fÞ�maxðkr,kaþkfÞ:

Note that Z40 if the control gains kv,1 and kv,2 are chosen as

2maxðkr,kaþkfÞo2kv,1okv,2o1=T. Then, if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þðsina�fÞ2þf2

q
Zffiffiffiffiffiffiffiffiffiffiffi

e=2Z
p

, DV r0 is obtained. Therefore, using the control law (79) and

(80) for ðxg,ygÞAOfront, rðkÞ, aðkÞ, and fðkÞ become uniformly

bounded around the origin (0, 0, 0). Using the same procedure as in
(91) for ðxg,ygÞAOrear, the discrete time analysis of the control law

(83) and (84) yields the same result, that is, rðkÞ, aðkÞ, and fðkÞ are
uniformly bounded around (0, p, p).

5. Simulation and experimental results

5.1. Simulation results

In this section, the performance of the proposed control laws is
illustrated through simulations. The forklift mass is m¼1500 kg.
The mass moment of inertia of the vehicle with respect to Ob is set
to Ib¼350 kg m2 and that of the rear wheel around the normal
axis is Id¼1.2 kg m2. The mass moments of inertia of the front and
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Fig. 5. Linear velocity and steering angle (simulation): (a) vd (solid line) and v (dashed line) and (b) dd (solid line) and d (dashed line).
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rear wheels around their individual rolling axes are If¼0.1 kg m2

and Ir¼0.6 kg m2, respectively. The radii of the front and rear
wheels are rf¼25 mm and rr¼150 mm, respectively. The motor
parameters are set to km,v¼km,d¼87.7 N m/A, km,v¼km,d¼0.75 O,
and kemf,v¼kemf,d¼0.6 V s/rad. The surface frictions in the direc-
tions of v and d are modeled as follows (Lee & Kim, 1995):

f v ¼ ðf
C
v�Df C

vð1�expð�v=vSÞÞþ f c
vv=rrÞsgnðvÞ, ð92Þ

f d ¼ ðf
C
d�Df C

dð1�expð� _d= _dSÞÞþ f c
d
_dÞsgnð _dÞ, ð93Þ

where f C
v�Df C

v and f C
d�Df C

d are the Coulomb frictions,
Df C

v expð�v=vSÞ and Df C
d expð� _d= _dSÞ are the Stribeck effects (vS

and _dS are the critical Stribeck velocities), and f c
v and f c

d are the
viscous frictions. The friction parameters are set to f C

v ¼ f C
d ¼ 1:2N,

Df C
v ¼Df C

d ¼ 1:0N, nS¼0.1 m/s, _dS ¼ 0:2rad=s, f c
v ¼ f c

d ¼ 0:5Ns. The
modeling errors are considered as the slip-angle at point Ob

during motion as �0:1sgnð _yÞ. The measurement noises were
given as random signals with bounds nx ¼ ny ¼ 0:01m and
ny ¼ 0:001rad. The PD control gains of the driving and steering
motors are set to kP, v, kP,d ¼ 400Vs=m 50 V/rad, kD,v ¼ 0:1Vs2=m,
kD,d ¼ 1Vs=rad. Fig. 5(a) and (b) illustrates the difference between
the desired commands generated from the outer loop (vd and dd)
with those in the inner loop (v and d), which are through the PD
control of the AC motors (simulation result).

To compare the performance of the two control laws (with and
without the consideration of uncertainties), a backward naviga-
tion from an initial configuration (x, y, y)¼(3, 3, 0) to a goal
configuration (x, y, y)¼(0, 0, 0) is simulated. The units of x and y

are in meters and that of y is radian. The gains are set to
kv,1¼0.5 s�1, kv,2¼5 s�1, kv,3 ¼ 0:2s�1, and e¼ 0:005s�1. The
trajectories of the forklift to the goal configuration are shown in
Fig. 6. The motions of the forklift in time, (x(t), y(t), y(t)), under
two different control laws, (54) and (55) vs. (83) and (84), are
compared in Fig. 7. With the control law (54) and (55), the forklift
arrived at (0.110, �0.010, 0.012) at t¼8 s, while using (83) and
(84), it reached (0.013, �0.010, 0.000). A faster convergence was
achieved with (83) and (84). Figs. 8 and 9 compare the applied
control commands vd and dd, respectively, during this navigation.

Now, consider the typical situation that the forklift has already
reached the goal point but the orientation error is still huge.
Assume that r¼ 0 and ~y ¼�p=2. Which is the case that the
vehicle is steered from (0, 0, p/2) to (0, 0, 0), see Fig. 10. The gains
are set to the same values as in the previous simulation. Also the
same uncertainties are assumed. As seen in Fig. 10, the vehicle has
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to move back and forth several times to achieve the desired
orientation in this case. The detailed motions of the forklift in
time are shown in Fig. 11. Figs. 12 and 13, respectively, depict the
control commands vd and dd in achieving the orientation control
in Fig. 10. The position and orientation values of the forklift at
t¼6 s was (0.010, 0.000, 0.002), which is quite acceptable.

6. Experimental results

In this subsection, two experimental results are presented. The
first experiment evaluates the control law (79) and (80) in steering
the forklift forward from the initial configuration (�5.55, 1.58,
�0.71) to the goal configuration (0, 0, 0), while the second
experiment tests the control law (83) and (84) in steering it
backward from (4.75, �1.3, �0.16) to (0, 0, 0). The gains were
kv,1¼0.3 s�1, kv,2¼5 s�1, kv,3¼0.2 s�1, and e¼0.01 s�1. Figs. 14–17
depict the trajectories in the x–y plane, the vehicle motions, the
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Fig. 10. Orientation control when the position error is zero but the orientation
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make the orientation error zero: (79) and (80) are used in Ofront and (83) and (84)

are used in Orear.
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linear velocity command, and the steering angle command, respec-
tively, of the forward movement, and Figs. 18–21 show those of the
backward movement. For the forward movement, the forklift
stopped at x¼�0.16 m, y¼0.01 m, and y¼0.00 rad at 49.5 s, while
for the backward movement, it stopped at x¼0.20 m, y¼0.01 m,
and y¼�0.02 rad at 35 s.
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7. Conclusions

In this paper, a robust configuration control of a forklift was
developed. A two-loop (outer and inner) control for automating
forklifts was adopted. Since the forward motion and backward
motion of the forklift were not symmetric, two different control
laws for individual motions were designed. For a nominal model
that does not involve any uncertainty (no slip and no noise), the
uniform asymptotic stability of the desired configuration was
achieved. However, in the presence of modeling uncertainty and
measurement noises, the developed control law assured the
uniform boundedness. The discrete-time analysis of the proposed
control law was performed. The range of control gains in regard to
the sampling period was clarified. Both simulation and experi-
mental results showed that the proposed method is robust
against uncertainties in obtaining fast and natural trajectories.
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